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The recent availability of enormous amounts of both data and computing power has cre-
ated new opportunities for predictive modeling. This paper compiles an analytical frame-
work based on multiple sources of data including daily trading data, online news,
derivative technical indicators, and time–frequency features decomposed from closing
prices. We also provide a real-life demonstration of how to combine and capitalize on all
available information to predict the stock price of BGI Genomics. Moreover, we apply a long
short-term memory (LSTM) network equipped with an attention mechanism to identify
long-term temporal dependencies and adaptively highlight key features. We further exam-
ine the learning capabilities of the network for specific tasks, including forecasting the next
day’s price direction and closing price and developing trading strategies, comparing its sta-
tistical accuracy and trading performance with those of methods based on logistic regres-
sion, support vector machine, gradient boosting decision trees, and the original LSTM
model. The experimental results for BGI Genomics demonstrate that the attention
enhanced LSTM model remarkably improves prediction performance through multi-
source heterogeneous information fusion, highlighting the significance of online news
and time–frequency features, as well as exemplifying and validating our proposed
framework.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

As has been widely reported in the media, the outbreak of coronavirus disease 2019 (COVID-19) has caused global mass
death and panic, and has become a worldwide public health emergency. Stock markets have also suffered a shock, especially
for stocks in biotechnology and pharmaceutical industries, not only because these stocks are usually news dependent [11]
but also because these industries have received growing attention from investors in recent years due to their potential rel-
evance in diagnosing, mitigating, treating, and preventing diseases. Meanwhile, with recent technological advancements
that foster vibrant creation, sharing, and collaboration among web users, the speed of information dissemination has been
greatly improved. In the investment field, although the enormous amounts of information being generated show great
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promise to reduce trading costs attributable to information asymmetry and financial market uncertainty, the increased
quantities of data, stored in structured, semi-structured, and unstructured formats and generated from multiple sources,
require further interpretation. How to develop a real-time stock prediction framework that capitalizes on all available infor-
mation from multiple data sources remains an ongoing research topic. The idea of the granular models introduced by Ped-
rycz [30] illustrates that generalizations of numerical models are formed as a result of an optimal allocation of information
granularity. Specifically, information fusion for stock price prediction is a multidisciplinary research field involving integra-
tion of information from multiple sources for data mining (subsuming statistics and machine learning), signal processing,
text mining, knowledge discovery, and expert systems modeling [17,32]. However, using multiple data sources instead of
a single source is a considerable challenge because solving this problem requires not only improving the efficiency of infor-
mation fusion, but also dealing with high levels of uncertainty, complexity [24], nonlinearity [33], and the dynamism of the
market itself. Leveraging a unique dataset collected from multiple sources and performing in-depth analyses on it, we pro-
vide a real-life demonstration of how these issues can be addressed.

BGI Genomics (stock code: 300676.SZ),1 a part of BGI Group which is one of the world’s leading life science and genomics
organizations, was officially listed on the Shenzhen Stock Exchange on July 14, 2017, becoming the exchange’s 2,001st listed
company. Its strengths are prenatal screening, hereditary cancer screening, detection of rare diseases, and aiding precision med-
icine research. It is one of the world’s leading providers of commercial sequencing services and genomics tests for medical insti-
tutions, research institutions, enterprises, and other public and private partners. The company’s potential, in light of the current
coronavirus pandemic and uncertain commercial environment, makes it an interesting candidate for in-depth exploration of
efficient approaches to data analysis.

At present, data are becoming one of the most valuable resources. In general, data coming frommore than one source can
deliver more information or knowledge than data from a single source. Historically, numerical and textual data have been
the two main types of data utilized by the financial field. Analysis of univariate or multivariate time series, whose values can
be numbers, texts, or other types of data, can provide insights into the underlying data generating process. On the one hand,
most common econometric models for forecasting treat each new signal as a noisy linear combination of the last few signals
and independent noise terms, including the autoregressive model, the moving average model, the autoregressive moving
average model, the autoregressive integrated moving average model, and stochastic volatility model. [13]. Although these
models have advantages in theoretically describing the underlying data generating process based on statistical logic, they
contain some strong assumptions about the noise terms (such as that variables are independent and identically distributed,
or follow a t-distribution) or explanatory variables (such as stationarity or exogeneity) that are not fully satisfied in the real
world. On the other hand, many machine learning models have been successfully developed over recent decades, without
imposing restrictive assumptions, to learn from and forecast financial time series, such as the support vector machine
(SVM) [34], gradient boosted decision trees (GBDTs) [47], neural networks (NNs) [1,45], and the ensemble model by cascad-
ing logistic regression (LR) onto GBDT [47]. However, one key limitation of most existing machine learning models is their
lack of an explicitly declared mechanism to handle nonlinearity and non-stationarity in time series [48], which may lead to
inaccurate predictions. From a signal processing perspective, time–frequency analysis methods [12,16] can be employed for
extracting and utilizing inherent instantaneous amplitude and frequency/phase information in combination with other rel-
evant morphological features. Additionally, many researchers have verified in their studies that the feature selection process
is a key factor for precise predictions, especially when data types are mixed and resultant features are together fed into a
classifier or regressor [28].

Meanwhile, it is challenging but also rewarding to interpret textual data and extract discriminative features from it effec-
tively. For example, firm-specific news articles can spread information and enrich the knowledge of investors. They can con-
sciously or unconsciously further affect investors’ trading activities, which might lead to overreaction or underreaction of the
stock price to the information [26]. The examination of monthly stock returns following public news also suggests that bad
public news is always followed by a negative drift but less drift is observed for stocks following good news [6]. Experiments
conducted for predicting the stock prices of Amazon and eBay in a framework of a multivariate Bayesian structural time ser-
ies model embedded with online text mining reveal that incorporating information from financial news and Twitter feeds
into sentiment predictors consistently boosts their forecasting power [19]. Therefore, for available textual data, more
advanced intelligent techniques such as computational linguistics and natural language processing (NLP) techniques can
be performed to structure input text, derive informative features, identify text sentiment, evaluate the output, or explore
stock trading strategies in an automated framework [23].

Building on the existing formal approaches, another rewarding direction for research would be to take advantage of deep
neural networks to capture temporal dependence structures in data across both short- and long-term periods, even equipped
with an attention mechanism that has the ability to focus on the most relevant parts of their inputs. Artificial neural net-
works (ANNs) are currently revolutionizing many technological areas, and aid in addressing the difficult aspects of theoret-
ically solvable but computationally hard problems [19,40]. ANNs are viable candidates to capture nonlinear relationships in
input data without assumptions or the need for prior knowledge of the statistical distributions of the data [2]. Their capa-
bilities in stock market analysis and prediction in emerging markets are found to be more attractive than the capabilities of
Fama and French’s model [5]. The recurrent neural network (RNN) is a special kind of feed-forward neural network that
1 BGI Genomics website in English: https://en.genomics.cn/.
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learns sequential patterns through internal loops by receiving input sequences [39]. The long short-term memory (LSTM)
network, an RNN composed of long short-term memory blocks that is also capable of learning long-term dependencies,
was first proposed by Hochreiter and Schmidhuber [15]. Many LSTM networks have been successfully implemented for
sequential data modeling; for instance, an LSTM network employed to predict returns in the Chinese stock market demon-
strates better performance than a random prediction method [7]. Trading strategy based on volume-weighted average prices
of daily S&P 500 data from 1992 to 2015 and derived using an LSTM network also outperforms memory-free classification
methods, that is, logistic regression, random forest (RF), and a deep neural network [10]. Further, a kind of dual-stage
attention-based RNN for stock price prediction has been proposed by Qin et al. [35], in which the attention mechanism is
incorporated into an encoder-decoder framework.

In summary, the investigation into multi-source heterogeneous information fusion and its applications in stock price pre-
diction is still at a developmental stage. A promising direction for research is to combine the attention mechanism with the
LSTM model to extract key features from various data sources, and to investigate their joint impact on the performance of
stock price prediction models and trading strategy. For this purpose, we use the example of BGI Genomics. Overall, this paper
contributes to the growing literature in several significant ways. (1) We compile a set of features based on multiple sources
of data incorporating daily trading data, online news, technical indicators derived from trading data, and time–frequency
features decomposed from closing prices, so as to provide a best performing-feature subset for information fusion and pre-
diction. (2) In order to effectively weaken the influence of non-stationarity of data on forecasting performance, we address
the problem of decomposing the original non-stationary price time series into a group of time–frequency features. (3) We
adapt an attention enhanced LSTM network and verify its forecasting performance using BGI Genomics as a real-life demon-
stration, mainly by comparing the model’s results with those of alternative models and comprehensively analyzing which
model demonstrates superior performance and generalization ability. (4) A framework integrating various data preprocess-
ing techniques is proposed for forecasting the next day’s price direction and the next day’s closing price, and analyzing the
benefits of a long/short trading strategy. This is exemplified and validated through in-depth analyses on BGI Genomics.

The remainder of this paper is structured as follows. Section 2 details the intrinsic time-scale decomposition method, the
long short-term memory network, and the attention mechanism. Section 3 proposes the study’s framework and illustrates
how it works. Section 4 presents the experimental results and analysis for BGI Genomics. Finally, Section 5 summarizes our
findings and concludes the paper.

2. ITD, LSTM, and attention mechanism

2.1. Intrinsic time-scale decomposition (ITD)

As an adaptive non-stationary signal decomposition technique, intrinsic time-scale decomposition (ITD) has been suc-
cessfully applied in the field of signal processing [36,44,46]. Through the ITD process, the original non-stationary signal
can be adaptively decomposed into several proper rotation components (PRCs), whose frequencies range from high to
low. In this subsection, we briefly review the ITD process. For a more detailed description of the method, please refer to Frei
and Osorio [12].

For a given signal x tð Þ, let B and L be the baseline extracting operator and the PRC extracting operator, respectively. In the
first step of ITD, x tð Þ is decomposed into two components through:
x tð Þ ¼ Bx tð Þ þ Lx tð Þ ¼ b tð Þ þ l tð Þ; ð1Þ

where b tð Þ is a baseline and l tð Þ is a PRC. Then, the process is repeated by using the baseline signal as a new input signal until
the resulting baseline has only two extreme values or is a constant. In the end, the input signal x tð Þ can be decomposed into a
series of PRCs with a decreasing instantaneous frequency. If this process takes k steps, x tð Þ is broken down into:
b0 tð Þ :¼ x tð Þ ¼ bk tð Þ þ
Xk

j¼1

lj tð Þ; ð2Þ
and the baselines and PRCs satisfy:
bj tð Þ ¼ bjþ1 tð Þ þ ljþ1 tð Þ; j ¼ 0;1; . . . ; k� 1: ð3Þ

Let cjs; s ¼ 1;2; . . . ; S be the extrema points of bj tð Þ; cj0 ¼ 0is its initial point. If there are multiple consecutive data points

with the same extreme value, we take cjs to be the rightmost point of these extreme values. Furthermore, we define

bj
s :¼ bj cjs

� �
. Then, constructing a baseline bjþ1 tð Þ by a piecewise linear formula in the interval t 2 cjs; cjsþ1

� �
between succes-

sive extrema, that is,
bjþ1 tð Þ ¼ bjþ1
s þ bjþ1

sþ1 � bjþ1
s

bj
sþ1 � bj

s

� bj tð Þ � bj
s

h i
; ð4Þ
where the knots are defined as
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bjþ1
sþ1 :¼ bjþ1 cjþ1

sþ1

� �
¼ a� bj

s þ
cjsþ1 � cjs
cjsþ2 � cjs

bj
sþ2 � bj

s

� �" #
þ 1� að Þ � bj

sþ1; ð5Þ
where a 2 0;1ð Þ is a tunable parameter, and a ¼ 1
2 in general.

After using the ITD method to decompose the input signal into a set of PRCs and a residual, the next step is to consider the
instantaneous amplitude A tð Þ, phase h tð Þ, and frequency Fr tð Þ of each PRC l tð Þ. Instead of the Hilbert-Huang transformation
(HHT) [16], Frei and Osorio [12] propose a wave-based method to calculate the instantaneous phase and instantaneous
amplitude of PRCs, ensuring a monotonic increase in phase angle. The instantaneous phase (IP) can be calculated as follows:
h tð Þ ¼

l tð Þ
A1

� �
p
2 ; t 2 t1; t2½ Þ;

l tð Þ
A1

� �
p
2 þ 1� l tð Þ

A1

� �
p; t 2 t2; t3½ Þ;

� l tð Þ
A2

� �
3p
2 þ 1þ l tð Þ

A2

� �
p; t 2 t3; t4½ Þ;

� l tð Þ
A2

� �
3p
2 þ 1þ l tð Þ

A2

� �
2p; t 2 t4; t5½ Þ;

8>>>>>>>>>><>>>>>>>>>>:
ð6Þ
where t1 and t5 are the corresponding times of two successive zero up-crossing points, t3 2 t1; t5½ � is the time of the zero
down-crossing point, t2 2 t1; t3½ Þ is the time of the maximum point and t4 2 t3; t5½ Þ is the time of the minimum point. A1 is
the value of A tð Þ at t2 (i.e., the maximum on the positive half-wave) and �A2 is the value of A tð Þ at t4 (i.e., the minimum
on the negative half-wave). Then, the instantaneous amplitude (IA) is defined as follows:
A tð Þ ¼ A1; t 2 t1; t3½ Þ;
A2; t 2 t3; t5½ Þ:

�
ð7Þ
Obviously, A tð Þ is a piecewise function, which is determined by the extreme value of PRCs. According to the IP formula in
Eq. (6), the instantaneous frequency (IF) can be calculated by
Fr tð Þ ¼ 1
2p

� dh tð Þ
dt

: ð8Þ
Overall, the ITD method is adaptive and suitable for processing stock trading data, which are usually nonlinear and non-
stationary time series. The panels in the first column of Fig. 1 illustrate the decomposition results produced by the ITD
method, including the PRCs (denoted c1 � c5) and the residual (denoted c6) of the closing price of BGI Genomics from July
14, 2017 to July 21, 2020. The second and the last columns of Fig. 1 present the IAs (denoted a1 � a5) and IFs (denoted
p1 � p5) of the PRCs, respectively.

2.2. Long short-term memory (LSTM)

An RNN composed of several long short-termmemory (LSTM) blocks is commonly called an LSTM network. In each mem-
ory block, there exists a memory cell that stores the state. Strictly speaking, the main difference between the blocks of an
LSTM and a traditional RNN is that the former can use newly introduced gates to decide whether to keep the existing mem-
ory or forget unnecessary information so as to ensure that the gradient of the long-term dependencies cannot vanish,
whereas the latter overwrites its content at each time step. The structure of LSTM as described in previous studies
[7,10,15] is illustrated in Fig. 2.

Given the current input Xt , the state Ht�1 that the previous step generated, and the memory state of the cell Ct�1 (peep-
hole), the LSTM cell can be synoptically expressed as:
YLSTM
t ;Ht ;Ct ¼ LSTM Xt ;Ht�1;Ct�1ð Þ: ð9Þ
Specifically, the detailed formulae of the LSTM function for the decisions whether to forget the stored memory, to take the
inputs, and to output the state generated are given as follows:
Ct ¼ Ft � Ct�1 þ It � tanh WxcXt þWhcHt�1 þ bcð Þ; ð10Þ

Ht ¼ Ot � tanh Ctð Þ; ð11Þ

YLSTM
t ¼ r WhyHt þ by

� �
; ð12Þ
where Ft ; It , and Ot are the forget gate, input gate, and output gate at time t, respectively. The forget gate is represented by
Ft ¼ r Wxf Xt þWhfHt�1 þ bf

� �
, where Wxf and Whf are the corresponding weight matrices and bf is the bias. The input gate is

represented by It ¼ r WxiXt þWhiHt�1 þ bið Þ with the corresponding weight matrices Wxi and Whi and the bias bi. The output
gate is represented by Ot ¼ r WxoXt þWhoHt�1 þ boð ÞwhereWxo andWho are the corresponding weight matrices and bo is the
bias. Ct and Ct�1 are the current and prior states of the cell, respectively. Wxc and Whc represent the corresponding weight
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Fig. 1. The results decomposed from the closing price of BGI Genomics by the ITD method from July 14, 2017 to July 21, 2020. Panels in the first column:
The top panel is the original signal (i.e., closing price time series), the remaining panels are the PRCs (c1 � c5) and the residual (c6). Panels in the second
column: The top panel is the original signal (i.e., closing price time series), and the remaining five panels are the corresponding IAs of the PRCs (a1 � a5).
Panels in the last column: The top panel is the original signal (i.e., closing price time series), and the remaining five panels are the corresponding IFs of the
PRCs (p1 � p5).
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Fig. 2. Graphical illustration of the structure of LSTM.
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matrices, and bc is the bias. � represents an element-wise multiplication operator, tanh �ð Þ is a hyperbolic tangent function,
and r �ð Þ is a sigmoid activation function.

According to Eq. (10), forget gate Ft controls the amount of information in the past cell state Ct�1 in updating the cell state
at time t, and the input gate It determines how much new information is stored in the cell state Ct . Finally, the hidden state
Ht in Eq. (11) is determined by passing through the output gate Ot and filtering at Ct , and Ct passes into the hyperbolic tan-
gent function. The prediction represented by YLSTM

t in Eq. (12) is determined by Ht where Why is the weight matrix and by is
the bias.
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Overall, the LSTM network can handle not only the large dimensionality of the system, but also a very general functional
form of the states while allowing for lags of unknown and potentially long duration in the time series, which makes it very
suitable for capturing long-term dependencies. It serves the purpose of finding hidden states in the time series, summarizing
them in a small number of state processes, and applying the most appropriate transformation to the non-stationary time
series in a data-driven way.

2.3. Attention mechanism

Attention has been proven to be a powerful mechanism for embedding categorical inference in a deep neural network. Its
main concept is to choose ‘‘where to look” by assigning a weight or importance to each lower position when computing an
upper level representation [18,27]. An overview of the architecture of attention enhanced LSTM is provided in Fig. 3.

Let Htf gNt¼1 be the hidden states obtained from the LSTM layer, where N is the number of data points. All these states are
fed into a subsequent Attention layer, and the output of the Attention layer can be synoptically regarded as
2 Win
3 Bai
4 Sin
YAttention ¼ Attention H1;H2; . . . ;Htð Þ: ð13Þ

Specifically, the Attention function is formed by a weighted sum of all the hidden vectors, calculated as
YAttention ¼
X
t

atHt ; ð14Þ
where the alignment vector at 2 0;1½ � is defined as
at ¼ softmax utð Þ ¼ exp utð ÞX
t

exp utð Þ ; ð15Þ
and
ut ¼ gT tanh WattnHt þ battnð Þ; ð16Þ

where at denotes attention weights satisfying the constraint of

P
tat ¼ 1; ;softmax �ð Þ is a softmax function; g is a trained

parameter vector and gT is its transpose; Wattn represents the learnable matrix and battn is the bias.
3. Our proposed framework

3.1. Overview

We illustrate the architecture of our proposed framework in Fig. 4, which can be synoptically divided into four stages. In
the first stage, we collect data related to BGI Genomics from multiple sources, consisting of daily trading data, online news,
derivative technical indicators, and time–frequency features decomposed from the closing price. Because the collected data
include both numerical (e.g., trading data) and textual data (e.g., online news), they pose a challenge for our prediction pur-
poses. The second stage is feature engineering. This stage mainly involves the implementation of data cleaning, feature
encoding, dimension reduction, and normalization. In the third stage, the proposed prediction model (i.e., attention
enhanced LSTM, denoted LSTM-Attention for simplicity), is trained on the training dataset for various prediction tasks,
including forecasting the next day’s price direction and the next day’s closing price. In the last stage, hyper-parameters that
appear in the prediction model are selected according to their performance on the validation dataset. In addition, prediction
performance is evaluated on the testing dataset at this stage.

3.2. Multi-source heterogeneous data collection

This study considers a dataset related to BGI Genomics for the period from 14 July 14, 2017 to July 21, 2020, which
encompasses the outbreak of COVID-19 that created high market volatility and had complex implications for the biotechnol-
ogy and pharmaceutical industries, and thus represents a challenge to our model. The dataset contains two main types of
data: daily trading data (numerical data) and daily online news data (textual data). First, the daily trading data are down-
loaded from the Wind Financial Terminal,2 including opening prices, lagged opening prices, high prices, low prices, closing
prices, previous day’s closing prices, returns, trading volumes, daily average prices, total market capitalization, and number
of shares outstanding. These data are used as proxies to capture value anomalies and trading information. Second, the daily
online news is acquired from Wind Financial Terminal, Baidu News,3 and Sina Finance4 for the same period, totaling 1,556,
d Financial Terminal website: http://www.wind.com.cn.
du News website: http://news.baidu.com.
a Finance website: http://finance.sina.com.cn.
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Fig. 4. Graphical illustration of the architecture of the proposed framework.
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552, and 2,554 stock-related news articles for BGI Genomics from each source, respectively. The average daily number of articles
is 6.13.

Because financial markets are usually chaotic, the inherent nonlinearity and non-stationarity in trading data pose chal-
lenges to the trend-based prediction of closing prices. To reduce the impact of non-stationarity, we use the ITDmethod intro-
duced in Section 2.1 to decompose the original non-stationary closing price data into several quasi-stationary components.
In the process of constructing the time–frequency features from the closing price series, in order to avoid using future infor-
mation, we use the ITD method to process each subsequence of closing prices following a sliding method with given param-
eters regarding the minimum length of time series h and the number of PRCs L.5 The process of the improved ITD method is
summarized in Algorithm 1. Then, the resulting PRCs, residual, IAs, and IFs together form the time–frequency features that can
be regarded as a new data source to improve forecasting performance.
5

de
Algorithm 1: Improved ITD method for constructing time–frequency features from the closing price series.
Note that the length of the time series processed by the improved ITD algorithm is at least h, so the time–frequency features of the first h days canno
rived.

311
Input: The size of the daily closing price time series N, the minimum length of time series h (h < N), the number of
PRCs L.
1: Set the PRCs c1; c2; . . . ; cL ¼ fg, the residual c Lþ 1ð Þ ¼ fg, the IFs p1; p2; . . . ; pL ¼ fg, and the IAs a1; a2; . . . ; aL ¼ fg.

2: for t ¼ h; . . . ;N do

3: Decompose the subsequence sub close :¼ closeif gti¼1 into L PRCs and compute the corresponding IA and IF for each

PRC by the ITD method. Here, we use PRCj, sub IAj, and sub IFj to represent the j-th PRC, IA, and IF, respectively,
j ¼ 1;2; . . . ; L.
4: Compute the residual of the subsequence sub close and call it Res, i.e., Res ¼ sub close�PL
j¼1PRCj.
5: Obtain the time–frequency features at time t, that is, c1t ¼ PRC1;t , . . ., cLt ¼ PRCL;t , c Lþ 1ð Þt ¼ Rest; a1t ¼ sub IA1;t ,
. . ., aLt ¼ sub IAL;t and p1t ¼ sub IF1;t , . . ., pLt ¼ sub IFL;t .
6: end for Output: The time–frequency features: c1; c2; . . . c Lþ 1ð Þ; a1; a2; . . . ; aL; p1; p2; . . . ; pL.
Further, because constructing new features from existing data is also a reliable method to improve prediction perfor-
mance in the field of machine learning [28], several technical indicators based on trading data and previously studied by
financial experts are generated as another novel data resource. As illustrated in Fig. 4, two categories of sophisticated quan-
titative indicators presented by Kakushadze [21] and Kingma and Ba [25] are adopted in this study. We refer to these as
Alpha 101 and Alpha 191 indicators, because they contain indicators of size 101 and 191, respectively.
t be
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3.3. Feature engineering

3.3.1. Data cleaning
In this subsection, we first clean the news data and technical indicators; other data are already structured and complete.

The online news articles are sorted by date as they are obtained from three platforms for the same period, as described in
Section 3.2. Alpha 101 and Alpha 191 indicators with more than 3% of values missing during the sample period are excluded.
Additionally, in order to ensure data consistency, we discard data (including trading data, online news, and Alpha 101 and
Alpha 191 indicators) from the first h days because the time–frequency features of these h days are unavailable.
3.3.2. Feature encoding
One major challenge in handling the online news is how to convert articles’ content into numerical vectors that can be

processed by a prediction model. This challenge belongs to the Chinese text feature encoding problem in the field of NLP.
Therefore, we apply NLP techniques to solve it by the following three steps.

First, the online news articles sorted by date are passed to TextRank4ZH,6 an abstract extraction toolkit for Chinese text, to
withdraw the most significant sentences from the daily online news based on the built-in sophisticated Pagerank algorithm
[29]. We limit each abstract to a maximum of ten sentences. Second, both SnowNLP7 and Senta8 tools are employed for senti-
ment analysis on each sentence of these abstracts. SnowNLP is a class library written in Python, inspired by the TextBlob library,
that can handle Chinese text content including tasks such as Chinese word segmentation, sentences segmentation, part-of-
speech tagging, sentiment analysis, text categorization, conversion of pinyin, traditional simplification, and text similarity anal-
ysis. The Senta (also called SKEP) model is trained to learn a unified sentiment representation for multiple sentiment analysis
tasks by embedding sentiment information at the word, polarity, and aspect levels into a pre-trained sentiment representation
[41]. Third, we collect the results of sentiment analysis on the abstracts of daily news articles obtained from SnowNLP and Senta
by date, and compute their daily mean values and daily standard deviations. Therefore, the resulting four numerical features
generated from the daily online news articles are not only able to quantify the sentiment of daily news to a certain extent,
but also can be the inputs fed into the prediction model.
3.3.3. Dimension reduction
In the fields of statistics, machine learning, and information theory, dimension reduction is a process of reducing the

number of random variables under consideration to obtain a set of principal variables [38]. As suggested by Pestov and Vla-
dimir [31] and Rico-Sulayes [37], the advantages of dimension reduction include: (1) Saving storage space and time required;
(2) Eliminating multicollinearity to improve the interpretation of machine learning model parameters; (3) When scaling
down to very small sizes (such as 2-dimension or 3-dimension), the data become much easier to visualize; (4) It avoids
the curse of dimensionality.

Feature projection (also called feature extraction), a well-known approach to dimension reduction, transforms the data
from a high-dimensional space to a space of fewer dimensions. The data transformation is allowed to be nonlinear [8] or
linear. In the paper we adopt principal component analysis (PCA) [20,43], a commonly used method of linear transformation.
The method can reduce the dimensions of both Alpha 101 and Alpha 191 indicators and extract information from them, as
their dimensions are too high for direct classification or regression.
3.3.4. Normalization
To ensure prediction performance is not impacted by differences in the scales on which features’ values are measured,

data normalization techniques are commonly used to transform the values of different scales to a notionally common scale.
There are different types of normalization in statistics, such as min–max feature scaling, studentized residual, and standard
score [49]. In this paper, we use the standard score for normalization, thus the values of features are scored by subtracting
the sample or estimated mean and dividing by the sample standard deviation or another estimate of standard deviation.
3.3.5. Feature importance
High dimensionality of features is likely to cause redundancy, which may negatively affect prediction performance.

Unlike feature projection methods that convert a high-dimensional feature space to a low-dimensional space, the computa-
tion of feature importance is a vital method that selects features according to their significance, from high to low, to achieve
feature dimensionality reduction. In addition, the calculation and visualization of feature importance also help data mining
analysts to understand the contribution of features. Ensemble decision-trees-based techniques, such as GBDT9 and RF,10 are
6 TextRank4ZH github website: https://github.com/letiantian/TextRank4ZH.
7 SnowNLP github website: https://github.com/isnowfy/snownlp.
8 Senta github website: https://github.com/baidu/Senta.
9 GBDT algorithm in Scikit-learn library: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.

ensemble.GradientBoostingClassifier.
10 RF algorithm in Scikit-learn library: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.
RandomForestClassifier.
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Fig. 5. Schematic of the LSTM-Attention prediction model.
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common methods for computing feature importance by counting the number of occurrences in the trees of the features as input
candidates. If a feature appears more frequently in these trees, it is more important and vice versa.

After completing the procedures above, we obtain representative features of trading data, online news, time–frequency
data, and Alpha 101 and Alpha 191 technical indicators for each trading day, except for the first h days (being the minimum
length of time series processed in the ITD method). Table 9 in the Appendix shows common descriptive statistics such as the
mean, standard deviation, minimum, and maximum of the features from trading data, news data, and time–frequency data.
The summary statistics of features from the Alpha 101 and Alpha 191 technical indicators are listed in Tables 10 and 11 in
the Appendix, respectively.

In dealing with a task of forecasting, we suppose that Xt denotes all representative features that serve as input candidates
for alternative prediction models at date t. In fact, we can use only the information in Xt at date t to make predictions, or use

the information over the l days until that date, which can be represented as bXt :¼ Xt�lþ1; . . . ;Xt
� �

. This means that the fea-
tures’ time window size l can be 1 or larger than 1. Generally speaking, the richer the information, the better the prediction
performance; however, if too much historical information is added during the training, it will be counterproductive due to
the curse of dimensionality. We will discuss the sensitivity of prediction performance to the features’ time window size
using experiments conducted in Section 4.1.1.
3.4. Attention enhanced LSTM (LSTM-Attention) prediction model

Once the representative features are obtained, the corresponding labels need to be constructed as input into our model for
supervised learning. However, the labels depend on the specific prediction task. For instance, they are assigned to be the next
day’s closing price for the task of predicting the next day’s closing price; in the task of predicting price direction, the label is
equal to 1 when the next day’s closing price is greater than or equal to the price on the current day, and 0 otherwise. The
resultant dataset with features and labels is further divided into the training, validation, and testing datasets in a specific
ratio.

Training a deep neural network is a complex task due to the potential for high dimensionality and nonlinearity. Building
on the existing studies discussed in Section 1, we propose an attention enhanced LSTM model (abbreviated as LSTM-
Attention) for prediction of stock closing prices, which is adaptable for multi-source heterogeneous information fusion.
The schematic of the LSTM-Attention model is depicted in Fig. 5.

As shown in Fig. 5, heterogeneous features are fed as inputs, then passed through the LSTM layer, the Attention layer, the
fully connected layers (Dense11), and the activation function layers (ReLU12 and Sigmoid13). The detailed process is summa-
rized in Algorithm 2.14 During the learning phase of the model, the losses on the training dataset are fed back layer by layer
11 Dense layer in Keras platform: https://keras.io/api/layers/core_layers/dense.
12 ReLU layer in Keras platform: https://keras.io/api/layers/activation_layers/relu.
13 Sigmoid layer in Keras platform: https://keras.io/api/layers/activations/#sigmoid-function.
14 Although step 5 reported in Algorithm 2 does not appear in the forward process of the LSTM-Attention model, we report it here because the subsequent
learning process depends on it.
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with the help of the back-propagating method [14], and update the undetermined weights of each layer using a gradient des-
cent based method, such as stochastic gradient descent (SGD) [4], AdaGrad [9], or Adam [22]. In addition, there are many hyper-
parameters in the LSTM-Attention model, including the number of neurons in the LSTM and Dense layers, the number of iter-
ations, and the learning rate. The values of these hyper-parameters are selected according to their performance on the validation
dataset; further details are described in Section 3.5.1.

The LSTM-Attention model can be used to handle classification and regression tasks, but needs to be adjusted slightly for
these two different tasks. Specifically, for the task of classification, the loss is generally selected from probabilistic losses,15

which include binary cross entropy, categorical cross entropy, and KL (Kullback–Leibler) divergence. For the regression task, the
true labels must be transformed to between 0 and 1 because the outputs of the Sigmoid layer are ranged from 0 to 1, and the
loss can be selected from regression losses,16 which cover mean square error, mean absolute error, mean absolute percentage
error, cosine similarity, and similar. In this paper, the LSTM-Attention model is used to predict the next day’s stock price direc-
tion, and to predict the next day’s closing price of BGI Genomics, which are essentially classification and regression tasks,
respectively.

Algorithm 2: Forward process of the LSTM-Attention prediction model.

Input: The training samples bXt; Yt

n oN

t¼l
, where bXt :¼ Xt�lþ1; . . . ;Xt½ � and Yt represent the features and the label of the t-

th sample, respectively, and l is the features’ time window size; o1 is the number of neurons in the LSTM layer; and o2
is the number of neurons in the first Dense layer.

1: Compute the outputs YLSTM
i of size o1 of the LSTM layer with the input bXt :¼ Xt�lþ1; . . . ;Xt½ � by Eq. (9):

YLSTM
i ;Hi;Ci ¼ LSTM Xt�lþi;Hi�1;Ci�1ð Þ, i ¼ 1;2; . . . ; l.

2: Calculate the output YAttention of size o1 of the Attention layer with the inputs Hif gli¼1 by Eq. (13):

YAttention ¼ Attention H1;H2; . . . ;Hlð Þ.
3: Compute the output YDense1 of size o2 of the first nonlinear Dense layer with the input YAttention:

YDense1 ¼ ReLU WDense1YAttention þ bDense1
� �

, where WDense1 of size o1 � o2 is the undetermined weights, bDense1 denotes

the bias, and ReLU �ð Þ denotes the nonlinear activation function of ReLU.

4: Similar to step 3, obtain the output ySigmoid of the second nonlinear Dense layer with the input YRelu, i.e.,

YSigmoid ¼ r WDense2YRelu þ bDense2
� �

, where r �ð Þ denotes the sigmoid function.

Output: The prediction of the LSTM-Attention model for the t-th sample: YSigmoid.

5: Calculate the loss Loss YSigmoid;Yt

� �
between the predicted result YSigmoid and the true label Yt for the t-th sample,

where the loss function is generally selected according to its specific prediction task.
3.5. Performance tuning and model evaluation

3.5.1. Hyper-parameters selection
Hyperopt17 is a Python library for serial and parallel optimization over awkward search spaces for hyper-parameters, which

may include real-valued, discrete, and conditional dimensions [3]. Currently, there are three algorithms implemented in Hyper-
opt, that is, random search, tree of Parzen estimators (TPE), and adaptive TPE. Hyperas18 is a convenience wrapper around
Hyperopt for fast prototyping with Keras models. Hyperas enables us to use the functions of Hyperopt without having to learn
its syntax. Hence, we adopt Hyperas as an approach to select hyper-parameters in our experiments.

3.5.2. Model evaluation

� Metrics of classification performance
The correctness of classification can be evaluated by computing the number of correctly recognized class examples (true

positives, TP), the number of correctly recognized examples that do not belong to the class (true negatives, TN), and examples
that either were incorrectly assigned to the class (false positives, FP) or were incorrectly not recognized as class examples
(false negatives, FN). The metrics Accuracy; Precision; Recall, and F-measure are widely used to evaluate the performance
of a classification task such as the prediction of stock price direction. These metrics are defined in Table 1, where Accuracy
is the number of correctly classified samples on total data, Precision gives the number of correct positive predictions divided
15 Probabilistic losses in Keras platform: https://keras.io/api/losses/probabilistic_losses.
16 Regression losses in Keras platform: https://keras.io/api/losses/regression_losses.
17 Hyperopt github website: https://github.com/hyperopt/hyperopt.
18 Hyperas github website: https://github.com/maxpumperla/hyperas.
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by the number of all positive class values returned by the classifier in the test data, and Recall is the number of positive
results divided by all relevant samples, which is also called Sensitivity or the True Positive Rate. F-measure is the harmonic
mean of Precision and Recall, which achieves its maximum value when Precision ¼ Recall ¼ 1.

� Metrics of regression performance

Four common and highly statistical evaluation metrics are employed to assess the regression performance of the models
of interest; these are the mean absolute error (MAE), the mean squared error (MSE), the root mean square error (RMSE), and
the mean absolute percentage error (MAPE). These metrics are defined in Table 2.

� Metrics of trading strategy performance

Because profits are not proportional to the performance of the classification or regression, we use a simple trading strat-
egy named long/short strategy, as suggested by Zhou et al. [47], to examine the profitability of our proposed framework.
Fig. 6 shows the rules of the long/short strategy. Based on the predicted value from the LSTM-Attention model, this strategy
introduces a buy-threshold and a sell-threshold to decide whether to change the position from �1 to 1, or from 1 to �1, or
just to keep the position. Following Zhou et al. [47], in our experiments without considering transaction costs, the values of
the buy-threshold and sell-threshold are set as 0.50.

Five metrics are chosen to evaluate the trading strategy performance. They are the Sharpe ratio (SR), average annual
return (PnL), maximum drawdown (MD), PnL=MD, and the total number of entered trades (TradeCount). Note that the SR
measures the risk-adjusted return, the PnL indicates the average annual return, the MD indicates the largest accumulated
loss due to a sequence of drops over the period of investment, and PnL=MD is computed as the PnL divided by the MD.
The definitions of SR; PnL; MD, and PnL=MD are listed in Table 3.

3.6. Proposed framework for BGI Genomics processing

In order to promote the understanding and use of our proposed framework, together with the overview in Section 3.1 and
elaborations of how it works from Section 3.2 to Section 3.5, we summarize the framework’s four main stages and sequential
steps as below.

Stage 1. Multi-source heterogeneous data collection
Input: The minimum length of time series h and the number of PRCs L that appear in the ITD method.

1: Collect the daily trading data, including the open price (open), lagged open price (lag open), high price (high),
low price (low), closing price (close), previous day’s closing price (prev close), return (r), trading volume (vol), daily
average price (avg), total market capitalization (cap), and number of shares outstanding (share), of BGI Genomics for
the period from July 14, 2017 to July 21, 2020 from Wind platform; and crawl the news data for the same period
from Wind platform, Baidu News, and Sina Finance web portals. Assume that the number of trading days during
this period is N.
2: Generate the time–frequency data for close using the improved ITD method summarized in Algorithm 1 with the given
h and L. The resulting c1 � c Lþ 1ð Þ; a1 � aL, and p1 � pL form the time–frequency features. In this process, the time–fre-
quency features of the first h days are discarded because the length of the time series processed by the ITD method is
limited to at least h.
3: Compute the Alpha 101 and Alpha 191 technical indicators, which are denoted alpha101 001 � alpha101 101 and
alpha191 001 � alpha191 191, respectively.

Output: The trading data (open; lag open;high; low; close; prev close; r;vol; avg; cap; share), the daily online news data, the
time–frequency features (c1 � c Lþ 1ð Þ; a1 � aL; p1 � pL), and the Alpha 101 (alpha101 001 � alpha101 101) and Alpha 191
(alpha191 001 � alpha191 191) technical indicators.

Stage 2. Feature engineering
Input: The dimension of the space reduced by the PCA method k, the features’ time window size l.

1: Exclude the technical indicators from alpha101 001 � alpha101 101 and alpha191 001 � alpha191 191 if their pro-
portion of missing values exceeds 3%. Then, PCA kð Þ is used to reduce the Alpha 101 and Alpha 191 technical indicators
to k features.
2: Integrate the news data by date. Then, the TextRank4ZH toolkit is leveraged to extract abstracts from the integrated
news, where each abstract has a maximum of ten sentences. Both SnowNLP and Senta techniques are further applied to
compute the sentiments for each sentence of the abstracts. Their statistical mean values and standard deviations by date
are calculated, i.e., snow avg; senta avg; snow std, and senta std.
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Table 1
Metrics of classification performance.

Metric Expression Metric Expression

Accuracy TPþTN
TPþFPþTNþFN

Recall TP
TPþFN

Precision TP
TPþFP

F-measure 2 	 Precision	 Recall
PrecisionþRecall

Table 2
Metrics of regression performance, where pt and p̂t are the actual and predicted values at time t, respectively. N represents the number of data sample points.

Metric Expression Metric Expression

MAE 1
N

P jpt � p̂t j MSE 1
N

P
pt � p̂tð Þ2

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
pt � p̂tð Þ2

q
MAPE 1

N

P j pt�p̂t
pt

j 	 100

Fig. 6. Graphical illustration of the long/short trading strategy.

Table 3
Metrics of trading strategy performance, where ri denotes the return of year i; Rt is the accumulated return until date t over a period N; l Rtð Þ and r Rtð Þ are the
corresponding mean and standard deviation of the return Rt .

Metric Expression Metric Expression

SR l Rtð Þ
r Rtð Þ MD maxs2 0;Nð Þ maxt2 0;sð Þ Rt � Rsð Þ� �

PnL QN
i¼1 1þ rið Þ

� �1
N � 1

PnL=MD QN

i¼1
1þrið Þ

� �1
N�1

maxs2 0;Nð Þ maxt2 0;sð Þ Rt�Rsð Þð Þ
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3: Construct the labels Ytf gN�1
t¼1 according to different prediction tasks, where Yt denotes the label of date t. Specifically, in

the next day’s closing price prediction task, Yt ¼ closetþ1; in the task of the next day’s closing price direction prediction,
Yt ¼ 1 if closetþ1 P closet ;Yt ¼ 0 otherwise.
4: Integrate all the features by date. The data for the first h days and the last day are discarded because the time–fre-
quency features of the first h days and the labels on the last day are unavailable. These features are then scored using
the standard scoring method and the final set of features are derived, i.e., Xtf gN�1

t¼h . Assume that the features over the l days

until date t are bXt :¼ Xt�lþ1; . . . ;Xt½ �; t ¼ hþ l� 1; . . . ;N � 1.

5: Divide the samples bXt ;Yt

� �N�1

t¼hþl�1
into the training, validation, and testing datasets in the ratio 7 : 2 : 1.
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Output: The training, validation, and testing datasets, which are denoted bXt ;Yt

� �Ntþhþl�2

t¼hþl�1
; bXt ;Yt

� �NtþNvþhþl�2

t¼Ntþhþl�1
, and

bXt; Yt

� �N�1

t¼NtþNvþhþl�1
, respectively, where Nt and Nv represent the corresponding number of training and validation datasets.

Stage 3. Training the LSTM-Attention model

Input: The training dataset bXt ;Yt

� �Ntþhþl�2

t¼hþl�1
; the hyper-parameters that appear in the LSTM-Attention model, including the

output size of the LSTM layer o1, the output size of the first Dense layer o2, the number of iterations, the learning rate.

1: Select loss function according to the specific prediction task. In this paper, the mean square error is chosen as the loss
function for the regression task, and the binary cross entropy is chosen for the classification task.

2: Train the LSTM-Attention model on training dataset bXt ;Yt

� �Ntþhþl�2

t¼hþl�1
using the general forward and backward feedback

method. The forward process is summarized in Algorithm 2, and the back propagation process is described in Section 3.4.

Output: A trained LSTM-Attention model that can make predictions for any sample from bXt ;Yt

� �N�1

t¼hþl�1
.

Stage 4. Performance tuning and model evaluation

Input: The validation dataset bXt ;Yt

� �NtþNvþhþl�2

t¼Ntþhþl�1
, the testing dataset bXt ;Yt

� �N�1

t¼NtþNvþhþl�1
.

1: Use the Python toolkit ‘‘Hyperas” on the validation dataset for hyper-parameters selection.
2: Set different prediction tasks and use the corresponding metrics listed in Tables 1–3 to evaluate the prediction per-
formance on the testing dataset.

Output: The prediction performance in different prediction tasks.
4. Empirical results and evaluation

In the section, using the minimum length of time series h ¼ 50 and the number of PRCs L ¼ 5, we conduct experiments to
evaluate the feasibility of our framework for fusing the heterogeneous information related to BGI Genomics. In addition, we
discuss the sensitivity of the prediction performance with respect to the size of the features’ time window and the dimension
reduction by the PCA method. Furthermore, we compare the results of our LSTM-Attention prediction model with the LR,
SVM, GBDT, and original LSTMmodels, in terms of their performance in predicting the next day’s price direction and the next
day’s closing price, and in developing a trading strategy. Here the original LSTM model is similar to the LSTM-Attention
model depicted in Fig. 5 but without the Attention layer. To ensure a fair comparison with these models, the method of
determining the hyper-parameters that appear in these models is the same as that for the LSTM-Attention model, as
described in Section 3.5.1.

All the experiments are performed in Python 2.7.3 on a Dell Precision 5820 tower with Intel(R) Xeon(R) W-2102 processor
(2.90 GHz), 64G memory, and Ubuntu 18.04.3 operating system. Specifically, the experiments related to the LR, SVM, and
GBDT models are carried out using the open-source machine learning library Scikit-learn,19 and the original LSTM and our
proposed LSTM-Attention models are implemented using the deep learning platform Keras. Note that the L1/L2 regular term,
as a general method to avoid overfitting, has become the standard configuration of most models in the Scikit-learn library
and Keras platform, which users can configure flexibly. The source code of this study has been publicly released.20

4.1. Preliminary analysis

As shown in Fig. 4, before applying the proposed LSTM-Attention prediction model, we conduct a preliminary analysis to
verify the feasibility of multi-source input data for fusing the heterogeneous information, the necessity of dimension reduc-
tion for filtering noise, the importance of individual features, and to optimize their combination.

4.1.1. The feasibility of multi-source data fusion
After the implementation of data cleaning, feature encoding, and normalization as described in Section 3.3, we first inves-

tigate the quality of a single source (i.e., trading data), and then study the added value of features derived from news data,
time–frequency data, Alpha 101 technical indicators, Alpha 191 technical indicators, and their combinations. Based on these
datasets from single or double data sources, a series of experiments are conducted. Table 4 presents and compares the per-
formance of price direction predictions of the LR, SVM, and GBDT models through the metrics defined in Table 1 (i.e.,
Accuracy; Precision; Recall, and F-measure) using the testing dataset and different sources of input data. For each model in
19 Website of Scikit-learn: https://scikit-learn.org/stable/index.html.
20 The source code can be downloaded from: https://github.com/zhoudafa08/heterogeneous_data_processing.
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Table 4
Accuracy; Precision; Recall, and F-measure metrics for the testing dataset derived using the LR, SVM, and GBDT models and different sources of input data, with
features’ window size l ¼ 1; 5; 10 in the three panels.

Model Trading data News data Time–frequency Alpha 101 Alpha 191 Accuracy Precision Recall F-measure

Panel A: using features’ time window size l ¼ 1
LR U 0.5072 0.5111 0.6571 0.5750

U U 0.5652 0.5556 0.7143 0.6250
U U 0.5797 0.6000 0.7105 0.6506
U U 0.5362 0.3778 0.8095 0.5152
U U 0.4638 0.2000 0.9000 0.3273

SVM U 0.4058 0.1111 0.8333 0.1961
U U 0.4782 0.4222 0.6552 0.5135
U U 0.5217 0.4889 0.6875 0.5714
U U 0.5797 0.7333 0.6600 0.6947
U U 0.4782 0.3111 0.7368 0.4375

GBDT U 0.4202 0.2667 0.6316 0.3750
U U 0.4638 0.4667 0.6176 0.5316
U U 0.5942 0.7111 0.6809 0.6957
U U 0.6087 0.5556 0.7813 0.6494
U U 0.5507 0.5553 0.7059 0.6076

Panel B: using features’ time window size l ¼ 5
LR U 0.5882 0.5454 0.7500 0.6316

U U 0.6176 0.5527 0.8214 0.6389
U U 0.5882 0.7273 0.6667 0.6957
U U 0.6029 0.5000 0.8148 0.6197
U U 0.5147 0.4773 0.6774 0.5600

SVM U 0.4264 0.1364 0.8571 0.2353
U U 0.5588 0.4772 0.7500 0.5833
U U 0.6176 0.8864 0.6500 0.7500
U U 0.5294 0.7045 0.6200 0.6596
U U 0.3823 0.0909 0.6667 0.1600
U 0.5714 0.5538 0.6545 0.6000

GBDT U U 0.4706 0.4773 0.6176 0.5385
U U 0.5147 0.5909 0.6341 0.6118
U U 0.6176 0.9318 0.6406 0.7593
U U 0.4706 0.2500 0.7857 0.3793

Panel C: using features’ time window size l ¼ 10
LR U 0.5672 0.4884 0.7500 0.5915

U U 0.5522 0.3953 0.8095 0.5313
U U 0.4179 0.2326 0.6250 0.3390
U U 0.5970 0.4651 0.8333 0.5970
U U 0.5075 0.3721 0.7273 0.4923

SVM U 0.4029 0.0930 0.8000 0.1667
U U 0.4030 0.0930 0.8000 0.1667
U U 0.5224 0.5116 0.6667 0.5789
U U 0.4627 0.3488 0.6522 0.4545
U U 0.5821 0.6977 0.6667 0.6818

GBDT U 0.3881 0.2558 0.5500 0.3492
U U 0.3731 0.2558 0.5238 0.3438
U U 0.3881 0.2093 0.5625 0.3051
U U 0.4030 0.4186 0.5455 0.4737
U U 0.5672 0.6512 0.6667 0.6588
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Table 4, the first row reports the results obtained from the trading data alone, and the other rows report the results obtained
from the trading data in combination with the news data, the time–frequency data, the Alpha 101 technical indicators, and
the Alpha 191 technical indicators. For each metric and model, the best outcome derived from the various sources of input
data is highlighted in bold. To investigate the influence of features’ time window size l, we conduct experiments using l ¼ 1
and present the corresponding results in Panel A. Panels B and C show the results using l ¼ 5 and l ¼ 10, respectively.

Observing the results displayed in three panels of Table 4, we find the following. (1) Significant differences exist in the
values of metrics for the LR, SVM, and GBDT models. Comparing the results in the three panels, the GBDT model reaches
the highest value of F-measure (i.e., 0.7593) using l ¼ 5 and the combination of trading data and Alpha 101 trading indicators.
The results in Panel B also demonstrate that all three models achieve the highest value of Accuracy (i.e., 0.6176 for all three
models) using the features’ time window size l ¼ 5. (2) Data source, model, and features’ time window size jointly influence
the performance of price direction prediction. Using the Accuracy and F-measure metrics for the three models in Panel A, we
can find the value added by news data, because the values of these two metrics for the combination of news data and trading
data are larger than the equivalent values using only trading data. In addition, we can use these two metrics to identify the
value added by time–frequency data in many cases, such as the results derived from the three models with l ¼ 1 in Panel A,
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the SVM model with l ¼ 5 in Panel B, and the GBDT model with l ¼ 10 in Panel C. Further, for the GBDT model with l ¼ 10 in
Panel C, the results of all metrics suggest the importance and added value of Alpha 191 technical indicators. (3) The results
derived using combinations of features from different data sources do not always outperform the results derived from the
trading data alone. Indeed, adding too many features may interfere with the identification of the relevant factors for predic-
tions and lead to worse prediction performance. Given the high dimensionality of the input features, such as in the two
groups of technical indicators, it is necessary to perform feature selection or dimension reduction before invoking a classifier
or a regressor.

4.1.2. The necessity of dimension reduction
Although the individual performance of each group of technical indicators in combination with the trading data has been

tested in Table 4, here we further investigate the results obtained when a dimension reduction method is employed. PCA is
now employed to extract representative features from the two groups of technical indicators by choosing sufficient eigen-
vectors to explain a percentage of the variance in the original data [42]. The results obtained using the LR, SVM, and GBDT
models and different groups of input data related to technical indicators, with the PCA method applied, are presented in
Table 5. The PCA parameter in the fifth column is the number of principal components, k ¼ 2; 3; 4 or 5. Based on the results
reported in Table 4, the features’ time window size l has been experimentally set to 5 here. For each metric and model, the
best outcome derived from the various combinations of input data is highlighted in bold.

As shown in Table 5, out of the different combinations, the highest observed value of Accuracy (i.e., 0.6087) is achieved by
both the SVM and GBDT models with the combination of trading data, Alpha 101 technical indicators, and PCA(4). The high-
est value of F-measure (i.e., 0.7077) is obtained by the GBDT model with the same combination. However, the optimal F-
measure scores for each model (i.e., 0.6742 for LR, 0.6957 for SVM, and 0.7077 for GBDT) are achieved with different com-
binations of technical indicators and number of PCA principal components. Overall, these findings indicate that for models
to have a better interaction between the classification task for real-time price direction prediction and alternative dimension
reduction methods, they must be designed to filter noise when dealing with multi-source heterogeneous information fusion.
Among all the experiments, those conducted with PCA(5) exhibit relatively better performance in terms of Accuracy and F-
measure metrics.

4.1.3. The importance of individual features
Furthermore, after reducing the number of dimensions of feature space, we can further rank these features based on a

measure of the importance or contribution of each feature used in the GBDT model.21 Fig. 7 presents the importance score
of each related feature, which is calculated by the weight of the number of times that each feature is used to split the data across
all trees via the GBDT model. As mentioned before, if the score is large, the corresponding feature is relatively important. The
features’ time window size l has been experimentally set to 1, and the number of principal components k produced by the PCA
method is 5 here. We can thus see the relative importance of two features for forecasting the next day’s stock price direction,
which are the second principal component derived from the Alpha 101 technical indicators (i.e., alpha101 v2) and the standard
deviation derived from news data by the Senta technique (i.e., senta std). In addition, some features from other categories of
input data also contribute to the prediction and have scores of around 0.05.

4.2. Performance of models forecasting the next day’s price direction

In this subsection, following the general scheme of the algorithm provided in Section 3.6, we examine the performance of
alternative models in forecasting the next day’s price direction, including the LR, SVM, GBDT, LSTM, and LSTM-Attention
models. After performing the individual experiment ten times for each model, we compute the average estimates and stan-
dard deviations of the metrics Accuracy; Precision; Recall, and F-measure, reported in Table 6. The features’ time window size l
has been experimentally set to 5 and the number of principal components k produced by the PCA method is 5 here. For each
metric, the best outcome derived from the five models is highlighted in bold.

From the results in Table 6, we can conclude that the highest values of Accuracy and F-measure are achieved by the LSTM-
Attention model, whereas the original LSTM model is suboptimal. This finding indicates that the approach of using a multi-
level network classifier of the LSTM model has great potential for forecasting stock price direction based on the signals
derived from multi-source heterogeneous information.

4.3. Performance of models forecasting the next day’s closing price

We additionally evaluate the prediction performance of the models forecasting the next day’s closing price. For this, we
use the metrics defined in Table 2, that is, MAE; MSE; RMSE, and MAPE. Table 7 presents the values of these metrics for the
differences between real closing prices and average estimates from ten repetitions of experiments using the testing dataset
and the SVM, GBDT, LSTM, and LSTM-Attention models. The LR model is not considered here because it is used for classifi-
21 In our experiments, the computation of feature importance is used to recognize the contribution of each feature, rather than to reduce feature
dimensionality that has been already preprocessed by the PCA method.
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Table 5
Accuracy; Precision; Recall, and F-measure metrics for the testing dataset derived from the LR, SVM, and GBDT models using different combinations of features
and PCA methods.

Model Trading data Alpha 101 Alpha 191 Reduced dimension k by PCA Accuracy Precision Recall F-measure

LR U U PCA(2) 0.5797 0.5556 0.7353 0.6329
U U PCA(3) 0.5797 0.6667 0.6818 0.6742
U U PCA(4) 0.6087 0.5333 0.8000 0.6400
U U PCA(5) 0.5942 0.6000 0.7297 0.6585
U U PCA(2) 0.5797 0.5556 0.7353 0.6329
U U PCA(3) 0.5652 0.5556 0.7143 0.6250
U U PCA(4) 0.5507 0.4889 0.7333 0.5867
U U PCA(5) 0.5797 0.5556 0.7353 0.6329

SVM U U PCA(2) 0.4928 0.5333 0.6316 0.5783
U U PCA(3) 0.4493 0.3111 0.6667 0.4242
U U PCA(4) 0.5362 0.6667 0.6383 0.6522
U U PCA(5) 0.5942 0.6222 0.7179 0.6667
U U PCA(2) 0.3913 0.0889 0.8000 0.1600
U U PCA(3) 0.4783 0.3556 0.6956 0.4706
U U PCA(4) 0.5942 0.5778 0.7429 0.6500
U U PCA(5) 0.5942 0.7111 0.6809 0.6957

GBDT U U PCA(2) 0.4638 0.3333 0.6818 0.4478
U U PCA(3) 0.4058 0.3111 0.5833 0.4058
U U PCA(4) 0.6087 0.7333 0.6875 0.7077
U U PCA(5) 0.5797 0.6667 0.6818 0.6742
U U PCA(2) 0.4928 0.5556 0.6250 0.5882
U U PCA(3) 0.4928 0.5556 0.6250 0.5882
U U PCA(4) 0.4927 0.5556 0.6250 0.5882
U U PCA(5) 0.5507 0.7111 0.6400 0.6737

Fig. 7. The relative importance of features based on how many times each feature is used to split data in the GBDT model.

Table 6
Average estimates and standard deviations of the metrics Accuracy; Precision; Recall, and F-measure from ten repetitions of experiments using the testing
dataset derived and the LR, SVM, GBDT, LSTM, and LSTM-Attention models for prediction of price direction.

Model Accuracy Precision Recall F-measure

LR 0:5015
0:0108 0:5341
0:0432 0:6370
0:0022 0:5801
0:0248

SVM 0:5147
0:1133 0:5909
0:3691 0:6178
0:0458 0:5511
0:2344

GBDT 0:5279
0:0633 0:5068
0:1360 0:6989
0:0848 0:5728
0:0880

LSTM 0:5853
0:0710 0:7500
0:2216 0:6585
0:0272 0:6847
0:1145

LSTM-Attention 0:6353
0:0267 0:8864
0:0988 0:6642
0:0164 0:7568
0:0329
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Table 7
MAE;MSE;RMSE, and MAPE for the differences between the real closing prices and average estimates from ten repetitions of experiments using the testing
dataset and the SVM, GBDT, LSTM, and LSTM-Attention models.

Model MAE MSE RMSE MAPE

SVM 10.6655 159.0070 12.6098 0.0882
GBDT 11.3953 200.9968 14.1773 0.0892
LSTM 7.2207 83.8763 9.1584 0.0578

LSTM-Attention 6.6329 73.1443 8.5524 0.0518
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cation prediction rather than regression prediction. The features’ time window size l has been experimentally set to 5 and the
number of principal components k produced by the PCA method is 5 here. For each metric, the best outcome derived from
the four models is highlighted in bold.

Comparing the results of these models in Table 7, we see that the LSTM-Attention model achieves overall highly accurate
regression results, with the lowest values of MAE; MSE; RMSE, and MAPE, indicating that the attention mechanism captures
some valuable information that may be ignored by the original LSTM model and the SVM and GBDT models.

In order to validate these regression results, as point estimates may be biased, a natural idea is to produce confidence
intervals and further examine the forecasting accuracy. Fig. 8 shows the average estimates from ten repetitions of experi-
ments for the SVM, GBDT, LSTM, and LSTM-Attention models associated with 95.44% confidence intervals (i.e., 
2 standard
deviations) compared with closing prices during the testing period. The red line in each figure is the real closing price during
the testing period and the black line represents the average estimate of ten repetitions of experiments. The 95.44% confi-
dence intervals are shown by the shaded areas. The multiple regression analyses conducted in these figures and Table 7 show
that the LSTM-Attention model can be considered the most accurate model for the regression task, because the average of
predicted prices (corresponding to the point estimation) and confidence intervals (corresponding to the interval estimation)
show the most similarity with real closing prices.

4.4. Profitability of different models with long/short strategy

Table 8 shows the SR; PnL; MD; PnL=MD; TradeCount, and Trading Days of the long/short strategy using the alternative
models, together with those of the ‘‘buy-and-hold strategy”, denoted Benchmark, and of the ‘‘ex post trading strategy”,
denoted Ex post. Although it is not the main purpose of this paper to find the best trading rules by using the features based
on the models, for such purposes additional considerations such as transaction costs need to be taken into account. We
therefore present results in Panel B calculated with inclusion of transaction costs, taken as 0.3% for simplicity.

Comparing the results in the two panels, we find that the values of SR; PnL, and PnL=MD in Panel B are lower than cor-
responding values in Panel A, suggesting that transaction costs weaken the trading performance. Following inclusion of
transaction costs, the value of SR derived from the GBDT model decreases by the most, and the value from the LSTM model
decreases the least. Without considering transaction costs, in Panel A, the original LSTM model records the highest PnL=MD
and the LR model records the lowest MD (excluding the Ex post figures). Additionally, according to the SR and PnL metrics,
the LSTM-Attention model in Panel A yields superior prediction performance, evidenced by long/short strategy results, com-
pared to other models. Taking transaction costs into account, the highest values of SR and PnL=MD are achieved by the orig-
inal LSTMmodel, and the highest PnL is achieved by the LSTM-Attention model. Overall, the results highlight the potential of
the original and attention enhanced LSTM models for developing higher quality trading rules and a more profitable trading
system.

Furthermore, Fig. 9 shows the evolution of the trading performance as a time series during the testing period, based on
the predicted values of the LR, SVM, GBDT, LSTM, and LSTM-Attention models. Performance metrics are those presented in
Table 8 and results from the buy-and-hold strategy (i.e., Benchmark) are included for comparison. The normalized com-
pounded profits of the long/short strategy without transaction costs (red line) and with transaction costs (blue line), and
the buy-and-hold strategy (black line) are presented in the top panel of each part of the figure. The other panels show
the buy and sell signals for the long/short strategy, without inclusion of transaction costs in the middle panels and with
transaction costs in the bottom panels.

5. Conclusion

The topic of forecasting stock prices using deep learning interests many researchers and investors because improved pre-
diction accuracy can be expected to bring enormous profit. The recent availability of enormous amounts of both data and
computing power has created new opportunities for prediction purposes. This paper combines the attention mechanism
with the LSTM model to extract features from multiple sources of data, and investigates their joint impact on the perfor-
mance of stock price prediction and trading strategy in the case of BGI Genomics. Examining different combinations of fea-
tures based on multiple sources of data, incorporating daily trading data, online news, technical indicators derived from
trading data, and time–frequency features decomposed by the ITD method from closing prices, we identify the best-
performing subset of features for information fusion and prediction. We also develop a framework by integrating various
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Table 8
SR; PnL; MD; PnL=MD; TradeCount, and Trading Days of the long/short strategy using the LR, SVM, GBDT, LSTM, and LSTM-Attention models, together with
those of the ’buy-and-hold strategy’, denoted Benchmark, and of the ‘ex post trading strategy’, denoted Ex post, for the testing dataset.

Model SR PnL MD PnL=MD TradeCount Trading Days

Panel A: without transaction costs
Ex post 12.62 328.49 0 Inf 18 68

Benchmark 4.05 12.24 0.18 68.00 1 68
LR 5.52 6.66 0.03 222.00 14 68

SVM 5.69 16.69 0.14 119.21 4 68
GBDT 4.81 2.33 0.06 38.83 14 68
LSTM 6.42 18.78 0.06 313.00 10 68

LSTM-Attention 6.61 26.96 0.10 269.60 6 68

Panel B: with transaction costs
Ex post 11.68 217.66 0 Inf 18 68

Benchmark 4.01 11.93 0.18 66.28 1 68
LR 4.70 4.47 0.05 89.40 14 68

SVM 5.13 8.94 0.09 99.33 7 68
GBDT 3.65 1.41 0.07 20.14 14 68
LSTM 6.36 11.72 0.06 195.33 12 68

LSTM-Attention 5.88 16.05 0.11 145.91 5 68

Fig. 8. Average estimates of ten repetitions of experiments for the SVM, GBDT, LSTM, and LSTM-Attention models and the corresponding 95.44% confidence
intervals (
2 standard deviations), compared with the real closing price during the testing period.
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Fig. 9. Time evolution of the trading performance and buy and sell signals using the LR, SVM, GBDT, LSTM, and LSTM-Attention prediction models. Top
panels of each part: Time evolution of the trading performance in the testing period based on the predictions of individual models, for the strategy without
transaction costs (red line), the strategy with transaction costs (blue line), and for comparison, the buy-and-hold strategy (benchmark strategy, black line).
Middle panels: Buy and sell signals of the prediction models’ trading strategies without transaction costs. Bottom panels: Buy and sell signals of the
prediction models’ trading strategies with transaction costs.
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Table 9
Summary statistics of features derived from trading data, news data, and time–frequency data.

Source Feature Number Mean Std. Min 25% 50% 75% Max

Trading data open 674 100.0351 49.3612 47.0000 61.2025 74.5500 144.0000 250.0000
lag open 674 100.0259 49.3478 47.0000 61.2025 74.5500 144.0000 250.0000
high 674 102.5368 51.1283 49.4400 62.5150 76.2950 148.0825 261.9900
low 674 97.9735 48.0490 46.5200 60.4925 73.0150 139.0100 238.0000
close 674 100.1665 49.5963 48.1100 61.3075 74.5900 144.2725 257.0200

prev close 674 100.1845 49.6217 48.1100 61.3075 74.5900 144.2725 257.0200
r 674 0.0480 3.3926 �10.0039 �1.7664 0.1190 1.6739 10.0065
vol 674 5:3187 	 106 4:4238 	 106 5:6910 	 105 2:5024 	 106 3:7325 	 106 6:8031 	 106 3:5532 	 107

avg 674 100.2719 49.5554 48.3543 61.3935 74.5721 143.6681 250.2272
cap 674 4:0077 	 1010 1:9843 	 1010 1:9249 	 1010 2:4529 	 1010 2:9843 	 1010 5:7723 	 1010 1:0283 	 1011

share 674 5:2027 	 108 5:1530 	 108 6:2851 	 107 1:9436 	 108 3:3042 	 108 6:5623 	 108 4:5992 	 109

News data snow avg 674 0.6466 0.1838 0.0598 0.5000 0.6320 0.8056 0.9569
snow std 674 0.2208 0.1420 0.0000 0.1345 0.2638 0.3349 0.4745
senta avg 674 0.5002 0.1802 0.0626 0.3828 0.5000 0.6167 0.9430
senta std 674 0.2089 0.1287 0.0000 0.1239 0.2519 0.3071 0.4129

a1 674 0.9106 2.1894 0 0 0 0.7688 18.1000
a2 674 2.3299 3.8932 0 0.2591 0.9933 2.7375 32.2280
a3 674 3.9086 5.1597 0 0.5178 1.9992 4.8761 36.3820
a4 674 8.6015 11.2630 0.0004 0.8611 3.9426 10.2983 48.1040
a5 674 14.8793 20.6166 0.0002 1.2688 4.8367 17.2045 68.9720
p1 674 1.0837 1.7107 0 0 0 1.5708 4.7124
p2 674 2.7827 1.7889 0 1.5708 1.5708 4.7124 4.7124

Time–frequency p3 674 3.0321 1.5856 0 1.5708 1.5708 4.7124 4.7124
data p4 674 3.0484 1.5692 1.5708 1.5708 1.5708 4.7124 4.7124

p5 674 3.0717 1.5704 1.5708 1.5708 1.5708 4.7124 4.7124
c1 674 0.2182 2.3614 �18.1000 0 0 0 16.9500
c2 674 0.4006 4.5202 �12.5750 �1.0150 0 0.9438 32.2280
c3 674 0.8625 6.4169 �33.1050 �1.4625 0.0531 2.4146 36.3820
c4 674 �0.2290 14.1739 �48.1040 �4.3403 0.1215 3.4171 41.5710
c5 674 �9.4688 23.6003 �68.9720 �15.6863 0.0389 3.4262 29.2630
c6 674 108.3830 52.0642 57.2340 63.5660 73.2605 164.9075 212.4000
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Table 10
Summary statistics of Alpha 101 technical indicators.

Feature Count Mean Std Min 25% 50% 75% Max

alpha101_001 674 0.4903 0.2801 0.0761 0.2332 0.5726 0.8317 0.8317
alpha101_002 674 �0.1032 0.4681 �0.9301 �0.5027 �0.1298 0.2407 0.9520
alpha101_003 674 �0.2031 0.4235 �0.9159 �0.5350 �0.2568 0.0866 0.9113
alpha101_004 674 �5.0000 2.9679 �9.0000 �8.0000 �5.0000 �2.0000 �1.0000
alpha101_005 674 �0.2383 0.2331 �0.9986 �0.3308 �0.1449 �0.0725 �0.0014
alpha101_006 674 �0.1928 0.4217 �0.9581 �0.5280 �0.2456 0.1047 0.8588
alpha101_008 674 �0.5055 0.2822 �1.0000 �0.7475 �0.5077 �0.2665 �0.0014
alpha101_009 674 0.0984 4.2992 �22.0600 �1.2250 �0.0650 1.5175 25.7000
alpha101_010 674 0.1703 4.2970 �22.0600 �1.2250 0 1.5175 25.7000
alpha101_011 674 0.4842 0.3282 0.0021 0.2112 0.4405 0.6847 1.5865
alpha101_012 674 �0.6060 4.2574 �25.7000 �1.9875 �0.3600 0.7800 22.7800
alpha101_013 674 �0.5019 0.2918 �1.0000 �0.7569 �0.5111 �0.2431 �0.0014
alpha101_014 674 �0.0984 0.2518 �0.8778 �0.2466 �0.0655 0.0270 0.8040
alpha101_015 674 �1.5024 0.5887 �2.9433 �1.9125 �1.5041 �1.0975 �0.1438
alpha101_016 674 �0.5045 0.2892 �1.0000 �0.7555 �0.5069 �0.2611 �0.0014
alpha101_018 674 �0.4929 0.2834 �1.0000 �0.7315 �0.4965 �0.2462 �0.0014
alpha101_020 674 �0.1681 0.2042 �0.9835 �0.2261 �0.0929 �0.0256 0.0000
alpha101_021 674 0.1246 0.9929 �1.0000 �1.0000 1.0000 1.0000 1.0000
alpha101_022 674 �0.0071 0.3986 �1.5397 �0.1496 0.0009 0.1414 1.3134
alpha101_023 674 �1.0250 4.7441 �39.4100 �0.7625 0 0 36.9500
alpha101_024 674 �5.2481 10.2483 �38.9500 �10.4775 �4.3400 0 66.2100
alpha101_025 674 0.5018 0.2833 0.0028 0.2610 0.5156 0.7447 1.0000
alpha101_027 674 1.0000 0 1.0000 1.0000 1.0000 1.0000 1.0000
alpha101_029 674 3.3382 1.4471 1.0056 2.1426 3.2976 4.4937 5.9750
alpha101_030 674 0.1286 0.0794 0.0104 0.0713 0.1217 0.1768 0.5018
alpha101_033 674 0.5066 0.2873 0.0041 0.2555 0.5021 0.7569 1.0000
alpha101_034 674 0.5103 0.2873 0.0014 0.2628 0.5186 0.7579 1.0000
alpha101_038 674 �0.2380 0.2174 �0.9023 �0.3456 �0.1654 �0.0689 �0.0009
alpha101_040 674 �0.1874 0.2621 �0.8739 �0.3468 �0.1395 �0.0280 0.5930
alpha101_041 674 �0.0497 0.6592 �3.4969 �0.2506 �0.0219 0.1704 4.0343
alpha101_042 674 2.1348 3.8876 0.0014 0.5722 1.1578 1.9646 43.0000
alpha101_044 674 �0.4280 0.4949 �0.9984 �0.8268 �0.6227 �0.1033 0.9412
alpha101_046 674 0.1301 1.3917 �6.8900 �1.0000 1.0000 1.0000 19.6000
alpha101_047 674 0.6566 1.1763 �0.9893 �0.0473 0.3844 1.0322 11.4341
alpha101_049 674 0.0788 3.1977 �22.0600 �0.4800 1.0000 1.0000 22.7800
alpha101_050 674 �0.7495 0.2111 �0.9986 �0.9376 �0.7982 �0.6030 �0.0236
alpha101_051 674 0.0943 3.1974 �22.0600 �0.4425 1.0000 1.0000 22.7800
alpha101_053 674 275.9593 21514.6395 �238698.0000 �2.4702 0.0049 2.5857 238700.3418
alpha101_054 674 �0.4262 0.2606 �1.0000 �0.6431 �0.4401 �0.1988 0
alpha101_055 674 �0.2572 0.4937 �0.9841 �0.6738 �0.3605 0.1138 0.9852
alpha101_056 674 �0.2405 0.2196 �0.9285 �0.3718 �0.1661 �0.0683 �0.0005
alpha101_057 674 0.4911 6.7141 �62.9900 �1.0648 0.3137 1.8087 40.5214
alpha101_060 674 �0.0014 0.0017 �0.0052 �0.0026 �0.0016 �0.0001 0.0024
alpha101_062 674 �0.4852 0.5002 �1.0000 �1.0000 0 0 0
alpha101_064 674 �0.4407 0.4968 �1.0000 �1.0000 0 0 0
alpha101_065 674 �0.4392 0.4967 �1.0000 �1.0000 0 0 0
alpha101_068 674 0 0 0 0 0 0 0
alpha101_072 674 4.4331 25.2251 0.0057 0.4547 0.9736 1.8481 493.0000
alpha101_073 674 �9.1320 5.0477 �17.0000 �13.0000 �9.0000 �5.0000 �1.0000
alpha101_074 674 �0.4970 0.5004 �1.0000 �1.0000 0 0 0
alpha101_077 674 0.3226 0.2273 0.0014 0.1341 0.2848 0.4769 0.9862
alpha101_081 674 �0.5208 0.4999 �1.0000 �1.0000 �1.0000 0 0
alpha101_083 672 0.8673 11.0008 �70.2675 �1.6709 0.2267 3.5335 71.8665
alpha101_086 674 0 0 0 0 0 0 0
alpha101_088 674 0.5076 0.2868 0.0041 0.2583 0.5179 0.7555 1.0000
alpha101_092 674 4.1365 2.5270 1.0000 1.0000 4.0000 7.0000 7.0000
alpha101_096 674 �7.3242 1.5951 �13.0000 �8.0000 �7.0000 �7.0000 �1.0000
alpha101_098 674 �0.0070 0.4435 �0.9738 �0.3419 0.0186 0.3378 0.9159
alpha101_099 674 �0.5000 0.5004 �1.0000 �1.0000 �0.5000 0 0
alpha101_101 674 �0.0154 0.5445 �0.9999 �0.4810 0 0.4635 1.0000
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data preprocessing techniques and tackle its learning capabilities for specific tasks, including forecasting the next day’s price
direction and the next day’s closing price, and analyzing the benefits for a long/short trading strategy.

In terms of statistical accuracy and trading performance, compared with the LR, SVM, GBDT, and original LSTM models,
the experimental results and in-depth analyses for BGI Genomics show that the attention enhanced LSTM model achieves
remarkable improvements in prediction performance by multi-source heterogeneous information fusion, and models that
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Table 11
Summary statistics of Alpha 191 technical indicators.

Feature Count Mean Std Min 25% 50% 75% Max

alpha191_001 674 �0.1461 0.5081 �0.9890 �0.5766 �0.1890 0.2514 0.9464
alpha191_003 674 0.6696 12.2021 �68.5500 �4.6275 0.0050 4.7550 60.5400
alpha191_004 674 �0.1543 0.9888 �1.0000 �1.0000 �1.0000 1.0000 1.0000
alpha191_006 674 �0.4907 0.2500 �0.7510 �0.7510 �0.2510 �0.2510 �0.2510
alpha191_007 674 0.4842 0.3282 0.0021 0.2112 0.4405 0.6847 1.5865
alpha191_008 674 0.5200 0.2798 0.0014 0.2833 0.5250 0.7583 1.0000
alpha191_009 674 100.2593 49.3075 51.5595 61.2718 74.6724 146.0503 234.5470
alpha191_012 674 �0.2462 0.2343 �0.9875 �0.3390 �0.1685 �0.0681 �0.0001
alpha191_013 674 �0.0497 0.6592 �3.4969 �0.2506 �0.0219 0.1704 4.0343
alpha191_014 674 0.0001 10.0993 �62.7200 �3.9275 �0.1250 3.2725 46.5200
alpha191_015 674 �0.0008 0.0161 �0.1000 �0.0060 0 0.0055 0.1000
alpha191_016 674 �0.7495 0.2111 �0.9986 �0.9376 �0.7982 �0.6030 �0.0236
alpha191_018 674 1.0031 0.0797 0.7560 0.9574 0.9981 1.0416 1.3036
alpha191_019 674 �0.0001 0.0735 �0.2440 �0.0426 �0.0019 0.0400 0.2329
alpha191_020 674 0.3897 8.7536 �25.8970 �4.9171 �0.5164 4.4594 37.8756
alpha191_021 674 �0.0690 2.4703 �11.1087 �1.0000 �0.2720 1.1663 9.1747
alpha191_022 674 �98.9511 48.1224 �211.2363 �144 �74.6083 �60.4823 �54.9735
alpha191_023 674 51.8650 7.5712 30.1150 46.8357 52.2175 55.7542 79.5787
alpha191_024 674 0.0544 6.2956 �22.5832 �2.7434 �0.3185 2.2654 28.7783
alpha191_027 674 3.9642 62.3864 �153.0914 �33.9152 �6.9047 42.5038 192.7562
alpha191_028 674 46.0056 35.7541 �17.6066 12.8207 41.8047 77.5327 119.6743
alpha191_029 674 1:9228 	 105 9:4215 	 105 �3:6381 	 106 �1:4198 	 105 �1:4679 	 104 1:9920 	 105 1:0173 	 107

alpha191_031 674 0.1035 6.7481 �18.8284 �3.9601 �0.5696 3.6819 23.4269
alpha191_032 674 �2.0000 0.5887 �2.9433 �2.0000 �2.0000 �1.0000 �0.1438
alpha191_034 674 1.0034 0.0670 0.8102 0.9645 1.0057 1.0412 1.2320
alpha191_036 674 0.4968 0.2890 0.0014 0.2465 0.4951 0.7462 1.0000
alpha191_037 674 �216.8244 5068.2919 �23652.8933 �1701 35.9658 1789.3365 27750.8772
alpha191_038 674 �1.0000 4.7441 �39.4100 �0.7625 0 0 36.9500
alpha191_041 674 �0.4808 0.1678 �1.0000 �0.4162 �0.4162 �0.4162 �0.4162
alpha191_042 674 �0.1874 0.2621 �0.8739 �0.3468 �0.1395 �0.0280 0.5930
alpha191_043 674 4:4103 	 106 1:7571 	 107 �7:6977 	 107 �3:8508 	 106 1:5229 	 106 1:0290 	 107 1:1420 	 108

alpha191_047 674 21.1994 15.0507 �18.2237 9.7817 22.4605 33.2687 52.3685
alpha191_048 674 �0.1243 0.0834 �0.5074 �0.1697 �0.1145 �0.0588 �0.0061
alpha191_049 674 0.4986 0.2187 0.0536 0.3254 0.5138 0.6783 0.9289
alpha191_050 674 0.0028 0.4374 �0.8578 �0.3566 �0.0277 0.3492 0.8929
alpha191_051 674 0.5014 0.2187 0.0711 0.3217 0.4862 0.6746 0.9464
alpha191_053 674 52.3739 13.4198 16.6667 41.6667 50.0000 58.3333 91.6667
alpha191_054 674 �0.4849 0.2803 �1.0000 �0.7224 �0.4816 �0.2436 �0.0057
alpha191_055 674 �68.8866 455.1920 �1718.0416 �263.6958 �69.9731 118.9330 2016.6866
alpha191_057 674 46.1301 24.1279 5.5400 24.7380 42.9472 68.7471 92.6738
alpha191_058 674 52.4332 10.4298 25.0000 45.0000 55.0000 60.0000 85.0000
alpha191_059 674 2.7471 22.2861 �59.3400 �9.5325 1.2700 10.1375 111.3100
alpha191_062 674 �0.4280 0.4949 �0.9984 �0.8268 �0.6227 �0.1033 0.9412
alpha191_063 674 49.2838 19.2573 6.2514 34.9882 47.4137 63.1272 92.2590
alpha191_065 674 1.0017 0.0437 0.8517 0.9797 1.0011 1.0231 1.2011
alpha191_066 674 0.0219 4.3617 �16.7405 �2.2564 �0.1134 2.0674 17.4130
alpha191_067 674 49.9596 11.3874 25.3152 41.5746 48.5643 58.0425 78.7689
alpha191_068 674 �4:9601 	 10�7 3:0429 	 10�6 0 �4:3910 	 10�7 �6:3494 	 10�8 1:5582 	 10�7 1:7288 	 10�5
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Table 11 (continued)

Feature Count Mean Std Min 25% 50% 75% Max

alpha191_069 674 �0.3201 0.2244 �0.8354 �0.4851 �0.3351 �0.1517 0.2583
alpha191_070 674 1:6154 	 108 1:6840 	 108 1:3939 	 107 5:7772 	 107 9:9917 	 107 1:9075 	 108 1:1817 	 109

alpha191_072 674 53.2241 11.3734 26.7890 44.6575 52.2874 62.0824 79.2427
alpha191_076 674 0.4841 0.1535 0.2715 0.4182 0.4610 0.5140 1.6130
alpha191_079 674 49.6429 14.5054 14.6352 39.0670 48.7588 59.1861 85.2442
alpha191_080 674 19.5966 99.4696 �83.3537 �30.2964 �3.2805 31.7205 1200.5022
alpha191_081 674 5:2474 	 106 3:3050 	 106 1:0482 	 106 2:9795 	 106 4:3135 	 106 6:0649 	 106 1:6267 	 107

alpha191_082 674 53.0468 10.3792 24.2015 45.4165 52.3005 60.6852 76.0180
alpha191_083 674 �0.5045 0.2892 �1.0000 �0.7555 �0.5069 �0.2611 �0.0014
alpha191_084 674 1:5024 	 107 3:2959 	 107 �5:6547 	 107 �4:6367 	 106 9:1038 	 106 2:4192 	 107 1:5472 	 108

alpha191_086 674 0.1301 1.3917 �6.8900 �1.0000 1.0000 1.0000 19.6000
alpha191_088 674 1.6152 17.4095 �34.5442 �9.4947 �0.6739 11.9001 58.6935
alpha191_089 674 �0.0944 2.8494 �10.7743 �2.0000 0.0514 1.4320 10.8588
alpha191_090 674 �0.4981 0.2895 �0.9986 �0.7458 �0.4986 �0.2486 �0.0014
alpha191_093 674 18.9129 13.8422 2.7100 7.8750 15.2600 26.4000 67.8400
alpha191_095 674 2:1494 	 108 1:8631 	 108 2:8660 	 107 8:2223 	 107 1:3558 	 108 3:0081 	 108 9:0899 	 108

alpha191_096 674 46.3085 27.2698 5.1796 23.2278 39.2274 67.0904 112.4911
alpha191_097 674 1:8590 	 106 1:6410 	 106 2:0596 	 105 7:8548 	 105 1:3031 	 106 2:3967 	 106 1:0228 	 107

alpha191_098 674 �5.2481 10.2483 �38.9500 �10.0000 �4.3400 0 66.2100
alpha191_099 674 �0.5019 0.2918 �1.0000 �0.7569 �0.5111 �0.2431 �0.0014
alpha191_100 674 2:1606 	 106 1:7282 	 106 3:0963 	 105 9:3818 	 105 1:6580 	 106 2:7716 	 106 9:9847 	 106

alpha191_101 674 �0.4926 0.5003 �1.0000 �1.0000 0 0 0
alpha191_102 674 49.1942 10.5188 31.7694 41.5690 46.9827 54.4488 91.3050
alpha191_103 674 44.2285 35.2438 0 10.0000 40.0000 80.0000 95.0000
alpha191_104 674 �0.0071 0.3986 �1.5397 �0.1496 0.0009 0.1414 1.3134
alpha191_105 674 �0.2031 0.4235 �0.9159 �0.5350 �0.2568 0.0866 0.9113
alpha191_106 674 0.2569 19.8327 �62.4900 �9.0125 �0.4450 9.0675 95.0600
alpha191_107 674 �0.1681 0.2042 �0.9835 �0.2261 �0.0929 �0.0256 0.0000
alpha191_109 674 0.9971 0.1312 0.6941 0.9052 0.9790 1.0682 1.6409
alpha191_110 674 123.0288 63.2200 34.9001 79.7922 104.5444 148.5177 378.9331
alpha191_111 674 1:0692 	 104 1:5747 	 106 �8:9833 	 106 �5:8243 	 105 2:0852 	 104 6:5441 	 105 8:4296 	 106

alpha191_112 674 �2.0000 38.9669 �80.7871 �30.7496 �5.8300 31.4155 81.8079
alpha191_114 672 0.8673 11.0008 �70.2675 �2.0000 0.2267 3.5335 71.8665
alpha191_116 674 �0.1299 1.2192 �4.2179 �0.9192 �0.2821 0.5463 3.6647
alpha191_118 674 126.1728 49.3493 40.8141 88.3101 119.7050 155.0957 325.9664
alpha191_120 674 2.1348 3.8876 0.0014 0.5722 1.1578 1.9646 43.0000
alpha191_122 674 0.0000 0.0016 �0.0036 �0.0009 0.0000 0.0010 0.0053
alpha191_123 674 �0.5000 0.5004 �1.0000 �1.0000 �0.5000 0 0
alpha191_126 674 100.2256 49.5704 48.2833 61.3275 74.5467 143.1742 250.3000
alpha191_128 674 �20.3023 113.4759 �748.4376 �58.6368 15.9909 48.1163 94.4449
alpha191_129 674 �16.0000 13.7424 �81.3600 �20.0000 �11.0000 �6.2450 �1.0000
alpha191_132 674 5:0590 	 108 3:8299 	 108 1:1369 	 108 2:1724 	 108 3:6020 	 108 7:0322 	 108 1:8497 	 109

alpha191_133 674 �4.4955 62.7920 �95.0000 �65.0000 �20.0000 60.0000 95.0000
alpha191_134 674 3:2286 	 105 1:3246 	 106 �2:9744 	 106 �2:1131 	 105 �3:7505 	 104 4:4652 	 105 1:2551 	 107

alpha191_135 674 1.0579 0.2446 0.7656 0.9429 1.0030 1.1051 2.6757
alpha191_136 674 �0.0984 0.2518 �0.8778 �0.2466 �0.0655 0.0270 0.8040
alpha191_137 674 382.1074 1046.7995 1.2376 23.5833 78.6708 316.1064 12999.0600
alpha191_139 674 �0.1928 0.4217 �0.9581 �0.5280 �0.2456 0.1047 0.8588

(continued on next page)
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Table 11 (continued)

Feature Count Mean Std Min 25% 50% 75% Max

alpha191_144 674 0 0 0.0000 0 0 0 0
alpha191_148 674 �0.4377 0.4965 �1.0000 �1.0000 0 0 0
alpha191_150 674 5:2009 	 108 5:1582 	 108 6:2851 	 107 1:9389 	 108 3:2979 	 108 6:5574 	 108 4:6288 	 109

alpha191_151 674 1.2090 16.0095 �27.5168 �6.4558 �0.7298 6.7053 64.2788
alpha191_155 674 4:4702 	 103 4:1572 	 105 �1:8198 	 106 �1:6728 	 105 �1:4131 	 104 1:2096 	 105 2:6387 	 106

alpha191_156 674 �0.7181 0.1761 �1.0000 �0.8610 �0.7318 �0.6022 �0.1650
alpha191_157 674 3.5016 1.4254 1.0049 2.2632 3.4910 4.7184 5.9930
alpha191_158 674 2.4363 7.9814 �21.6317 �1.0000 0.9246 4.1404 52.4837
alpha191_160 674 3.0890 2.1346 0.6624 1.5520 2.2150 4.2154 9.5648
alpha191_161 674 4.8465 3.5734 0.9925 2.1642 3.5758 6.7469 19.3108
alpha191_162 674 �1.0000 0 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000
alpha191_163 674 0.5018 0.2833 0.0028 0.2610 0.5156 0.7447 1.0000
alpha191_164 674 0.0030 0.0119 0 0.0000 0.0000 0.0008 0.1509
alpha191_167 674 15.7092 15.0387 1.3500 5.9025 9.9400 19.2700 97.5100
alpha191_168 674 �1.0000 0.5404 �7.2381 �1.0000 �0.8881 �0.6906 �0.3760
alpha191_170 674 �0.2523 0.3540 �0.9930 �0.4873 �0.2550 �0.0361 2.2602
alpha191_172 674 38.2084 21.2174 5.0479 19.8982 34.0559 54.7267 88.8475
alpha191_173 674 104.8184 51.7254 47.8337 65.5069 78.1889 144.6624 271.6095
alpha191_174 674 3.4200 2.5809 0.7963 1.4970 2.4375 4.3806 11.6159
alpha191_175 674 4.8385 3.7097 0.9050 2.1317 3.4008 6.7717 23.2633
alpha191_176 674 0.2572 0.4937 �0.9852 �0.1138 0.3605 0.6738 0.9841
alpha191_177 674 39.7329 34.7962 0 5.0000 30.0000 75.0000 95.0000
alpha191_178 674 3:0366 	 104 3:4830 	 105 �2:5349 	 106 �5:1757 	 104 2:6616 	 103 6:1132 	 104 2:3445 	 106

alpha191_180 672 �2:4691 	 106 2:9358 	 106 �1:4949 	 107 �3:5245 	 106 �1:8683 	 106 �40.7500 60.0000

alpha191_182 674 0.3447 0.1257 0.0500 0.2500 0.3500 0.4000 0.7000
alpha191_185 674 0.4974 0.2767 0.0028 0.2610 0.4986 0.7348 0.9821
alpha191_187 674 51.3542 43.3030 11.1100 21.5250 34.2750 60.9200 231.9500
alpha191_188 674 �2.0000 36.4273 �100.0000 �27.7794 �7.3642 17.2499 204.3086
alpha191_189 674 3.4204 3.3909 0.3789 1.2220 2.2408 4.2592 23.1947
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include news-related features and time–frequency features often achieve the best performance metrics, indicating the rel-
evance of online news and time–frequency features for prediction purposes and validating our proposed framework.

Due to limitations on paper length, this study only conducts experiments on data for BGI Genomics. Because numerical
and textual data are the two main types processed in this paper, our approach can be applied to any company for which
these two data types are available. In practical application, our framework also provides various options that can be applied
for analyzing other stocks or assets, adopting other information fusion methods, developing other trading rules, or using
other types of data from different sources.
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